SUPPORTING INFORMATION

Intramolecular Diels-Alder Reactions of Furan-tethered 1-Alkenesulfinic Acid Esters

Adrian L. Schwan^{*,†} Jennifer L. Snelgrove,[†] Mark L. Kalin,[†] Robert D.J. Froese[‡] and Keiji Morokuma^{*,‡}

[†]Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Chemistry and Biochemistry, University of Guelph, Guelph, ON, Canada, N1G 2W1 [‡] Cherry L. Emerson Center for Scientific Computation and the Department of Chemistry, Emory University, Atlanta, GA, USA, 30322

Synthetic Procedures and Spectroscopic Data

General procedure for 1-alkenesulfinyl chloride synthesis: To a solution of diphenylmethyl or p-methoxybenzyl 1-alkenyl sulfoxide in dry CH_2Cl_2 (1mmol/10mL) stirring at -78°C was added SO_2Cl_2 (1.2 eq., 1 M solution in CH_2Cl_2) via syringe. The mixture was stirred at -78°C for 10 min. and then warmed to rt until the fragmentation was complete (30 min.-1hr.).

Synthesis of 2-(2-furyl)ethyl ethenesulfinate (1a) using diphenylmethyl ethenyl sulfoxide. The reaction of diphenylmethyl ethenyl sulfoxide (2.90 g, 11.9 mmol) in CH₂Cl₂ (40 mL) with SO₂Cl₂ (13.2 mL, 13.2 mmol, 1M solution in SO₂Cl₂) and subsequent addition of 2-(2-furyl)ethanol (1.07 g, 9.58 mmol), and K₂CO₃ (8.28 g, 59.9 mmol) afforded sulfinate **1a** (1.17 g, 53%) as a colorless oil after flash chromatography on silica gel (10% EtOAc / hexanes). ¹H NMR (400 MHz), δ : 7.33 (d, *J* =1.9 Hz, 1H), 6.58 (dd, *J* =10.0 & 17.0 Hz, 2H), 6.30 (dd, *J* =1.9 & 3.4 Hz, 1H), 6.13 (d, *J* =17.0 Hz, 1H), 6.11 (d, *J* = 3.4 Hz, 1H), 5.99 (d, *J* = 10.0 Hz, 1H), 4.21 (t of ABq, *J* = 6.7 & 10.3 Hz, 2H), 3.03 (t, *J* = 6.7 Hz, 2H); ¹³C NMR (100.6 MHz), δ : 151.12, 142.66, 141.55, 125.06, 110.32, 106.83, 63.57, 29.07; IR, cm⁻¹: 3121, 3042, 2956, 2931, 1616, 1506, 1379, 1129, 1012, 970; MS (CI, methane), m/z(%): 187(12), 105(13), 96(13), 95(100), 94(98), 81(82), 75(11), 67(11), 55(22), 53(23). Analysis calc'd for C₈H₁₀O₃S: C, 51.60; H, 5.41; found: C, 51.85; H, 5.60.

Cycloadditions of 2-(2-furyl)ethyl ethenesulfinate (1a).

<u>Using ZnBr₂</u>: A solution of 2-(2-furyl)ethyl ethenesulfinate (**1a**) (60.0 mg, 322 μ mol) in dry toluene (3 mL) was added to a flask containing flame dried ZnBr₂ (2.0 eq) via a syringe. The mixture was stirred at rt for 5 d. After addition of ether (10 mL) and NaHCO₃ (aq) (10 mL), the

layers were separated and the organic layer was washed with brine (10 mL) and dried over Na₂SO₄. Filtration and concentration (aspirator) provided crude product. Flash chromatography on silica gel with 15% EtOAc / hexanes followed by 35% EtOAc / hexanes afforded cycloadduct **3a** (18 mg, 30%). Data for **3a**: ¹H NMR (400 MHz), δ : 6.53 (dd, *J* = 1.8 & 5.8 Hz, 1H), 6.08 (d, *J* = 5.8 Hz, 1H), 5.17 (dd, *J* = 1.8 & 4.7 Hz, 1H), 4.29 (m, 2H), 2.58 (ddd, *J* = 6.3, 11.9 & 15.3 Hz, 1H), 2.40 (dd, *J* = 3.1 & 8.0 Hz, 1H), 2.24 (m, 2H), 1.84 (dd, *J* = 8.0 & 12.6 Hz, 1H). ¹³C NMR (100.6 MHz), δ : 139.15, 135.68, 87.71, 79.06, 63.84, 61.16, 29.01, 27.11; IR (CDCl₃), cm⁻¹: 3022, 2985, 1125, 1014, 825; MS (EI), m/z(%): 186(1), 151(3), 121(2), 120(4), 107(4), 95(21), 94(100), 92(2), 91(4), 90(1), 81(62), 79(3), 78(6), 77(5), 75(7), 67(6), 66(9), 65(7), 56(3), 55(25), 53(17), 52(3), 51(3). Analysis calc'd for C₈H₁₀O₃S: C, 51.60; H, 5.41; found: C, 51.64; H, 5.62.

<u>Using Et₂AlCl (rt)</u>: A solution of **1a** (60.0 mg, 322 μ mol) in dry CH₂Cl₂ (2-3 mL) was added to a flask via a syringe and was taken to 0°C. To the flask was added Et₂AlCl (1.2 eq., 1.8 M solution) via syringe. After stirring for ten minutes, the mixture was warmed to rt and was stirred for 2 d. After addition of ether (10 mL) and NaHCO₃ (aq) (10 mL), the layers were filtered with suction through Celite, separated and the organic layer was washed with brine (10 mL) and dried over Na₂SO₄. Filtration and concentration (aspirator) provided crude product. Chromatography as above afforded pure cycloadduct **3a** (26 mg, 43%).

<u>Using Et₂AlCl (62 °C)</u>: A solution of **1a** (60.0 mg, 322 μ mol) in dry toluene (2-3 mL) was added to a flask via a syringe and was taken to 0 °C. To the flask was added Et₂AlCl (1.2 eq, 1.8 M solution) via syringe. After stirring for ten minutes, the mixture was warmed to rt and heated at 62 °C for 7h.. Work-up as above provided crude product which was chromatographed as above to afford sulfinate **1a** (3 mg, 5%) followed by cycloadduct **3a** (29 mg, 53% based on recovered **1a**).

<u>Using no catalyst</u>: A solution of **1a** (60.0 mg, 322 µmol) in dry toluene (3 mL) was added to a flask containing BHT (0.1 eq, 7.10 mg, 32.2 µmol) and the solution was stirred until the BHT was dissolved. The mixture was heated at 68 °C for 24 d. Workup and chromatography as above for the Et₂AlCl reaction afforded **1a** (2 mg, 3%) and an inseparable isomeric mixture of cycloadducts **2a/3a** (31 mg, 54% based on recovered 1a) in a 1:1 ratio. Partial data for **2a**: ¹H NMR (400 MHz), δ : 6.56 (dd, J = 1.7 & 5.8 Hz, 1H), 6.03 (d, J = 5.8 Hz, 1H), 5.16 (d, J = 4.9 Hz, 1H), 4.74 (ddd, J = 2.0, 11.9 & 13.6 Hz, 1H), 3.81 (ddd, J = 1.6, 5.2 & 11.9 Hz, 1H), 2.64 (m, 1H), 2.39 (dd, J = 3.2 & 7.8 Hz, 1H), 2.33 (m, 2H), 1.65 (dd, J = 8.2 & 11.9 Hz, 1H). ¹³C NMR (100.6 MHz), δ : 140.18, 136.65, 83.28, 78.46, 53.37, 51.75, 28.69, 27.37.

Oxidation of a mixture of cycloadducts 2a/3a. A solution of mCPBA (395 mg, 2.29 mmol) in SO_2Cl_2 (15 mL) was added dropwise to a 1:1 mixture of cycloadducts **2a/3a** (94.3 mg, 506 µmol) and BHT (33.5 mg, 152 µmol) in CH₂Cl₂ (15 mL) cooled to -78°C. After 10 minutes, the solution was warmed to rt and stirring continued for 5.5 hours. The solution was impinged with dry NH₃, and the resulting ppt. was removed by suction filtration through Celite. The filtrate was dried (MgSO₄), filtered and concentrated (aspirator) to afford crude product. Flash chromatography on silica gel with 45% EtOAc / hexanes afforded the corresponding sultone (82.9 mg, 81%) as a white crystalline solid, mp 129.5-131°C. ¹H NMR (400 MHz), & 6.60 (dd, J = 1.8 & 5.6 Hz, 1H), 6.09 (d, J = 5.6 Hz, 1H), 5.22 (dd, J = 1.8 & 4.7 Hz, 1H), 4.79 (ddd, J = 2.3, 11.7 & 13.4 Hz, 1H), 4.50 (ddd, J = 1.4, 5.6 & 11.7 Hz, 1H), 3.21 (dd, J = 3.5 & 8.0 Hz, 1H), 2.63 (ddd, J = 5.6 Hz, 1H), 2.55 (ddd, J = 3.5, 4.7 & 12.3 Hz, 1H), 2.35 (d, $J = 1.4 \& 1.5 \biggr Hz$, 1H), 2.55 (ddd, J = 3.5, 4.7 & 12.3 Hz, 1H), 2.35 (d, $J = 1.4 \biggr = 1.5 \biggr Hz$, 1H), 2.55 (ddd, $J = 3.5 \biggr Hz$, 1H), 2.35 (d, $J = 3.5 \biggr Hz$, 1H), 2.55 (ddd, $J = 3.5 \biggr Hz$, 1H), 2.35 (d, $J = 3.5 \biggr Hz$, 1H), 2.55 (ddd, $J = 3.5 \biggr Hz$, 1H), 2.35 (d, $J = 3.5 \biggr Hz$, 1H), 2.55 (ddd, $J = 3.5 \biggr Hz$, 1H), 2.35 (d, $J = 3.5 \biggr Hz$, 1H), 2.55 (ddd, $J = 3.5 \biggr Hz$, 1H), 2.35 (d, $J = 3.5 \biggr Hz$, 1H), 2.55 (ddd, $J = 3.5 \biggr Hz$, 1H), 2.35 (d, $J = 3.5 \biggr Hz$, 1H), 2.35 (d, $J = 3.5 \biggr Hz$, 1H), 2.55 (ddd, $J = 3.5 \biggr Hz$, 1H), 2.35 (d, $J = 3.5 \biggr Hz$, 1H), 2.55 (ddd, $J = 3.5 \biggr Hz$, 1H), 2.35 (d, $J = 3.5 \biggr Hz$, 1H), 2.35 (d, $J = 3.5 \biggr Hz$, 1H), 2.35 (d, $J = 3.5 \biggr Hz$, 1H), 2.35 (d, $J = 3.5 \biggr Hz$, 1H), 2.35 (d, $J = 3.5 \biggr Hz$, 1H), 2.35 (d, $J = 3.5 \biggr Hz$, 1H), 2.35 (d, $J = 3.5 \biggr Hz$, 1H), 2.35 (d, $J = 3.5 \biggr Hz$, 1H), 2.35 (d, $J = 3.5 \biggr Hz$, 1H), 2.35 (d, $J = 3.5 \biggr Hz$, 1H), 2.35 (d, $J = 3.5 \biggr Hz$, 1H), 2.35 (d, $J = 3.5 \biggr Hz$, 1H), 2.35 (d, $J = 3.5 \biggr Hz$, 1H), 2.35 (d, $J = 3.5 \biggr$

15.6 Hz, 1H), 1.85 (dd, J = 8.0 & 12.3 Hz, 1H). ¹³C NMR (100.6 MHz), δ : 140.18, 135.45, 87.94, 78.72, 68.53, 57.88, 29.29, 27.25; IR (CDCl₃), cm⁻¹: 3018, 2972, 1605, 1360, 1175, 996, 800; MS (CI, methane), m/z(%): 202(1), 157(18), 141(25), 94(97), 93(17), 81(37), 78(15), 77(100), 66(10), 64(21). Analysis calc'd for C₈H₁₀O₄S: C, 47.52; H, 4.98; found: C, 47.71; H, 5.18.

Synthesis of 2-(2-furyl)ethyl (*E*)-carbomethoxyethenesulfinate (1b) using p-methoxybenzyl (*E*)-carbomethoxyethenyl sulfoxide. To the sulfinyl chloride from the reaction of pmethoxybenzyl (*E*)-carbomethoxyethenyl sulfoxide (114 mg, 0.452 mmol) in SO₂Cl₂ (10 mL) with SO₂Cl₂ (0.54 mL, 0.54 mmol), cooled to -78 °C was added K₂CO₃ (187 mg, 1.36 mmol) and BHT (10 mg, 0.045 mmol). After stirring for 10 min., 2-(2-furyl)ethanol (35.5 mg, 0.317 mmol) in CH₂Cl₂ (1 mL) was added and after 10 min., the solution was warmed to rt and stirred for ca. 19 hours. Filtration through Celite and concentration (aspirator) yielded the crude mixture which was quickly eluted through a silica gel plug (10-12 g) with hexanes / EtOAc. The fractions with product (<20% EtOAc) were concentrated and separated by flash chromatography on silica gel (10% EtOAc / hexanes) to afford sulfinate **1b** (70 mg, 64%) as a colorless oil that reacted rapidly. ¹H NMR (200 MHz), δ : 7.35 (d, *J* = 15.4 Hz, 1H), 7.34 (d, *J* = 1.8 Hz, 1H), 6.61 (d, *J* = 15.4 Hz, 1H), 6.31 (dd, *J* = 1.8 & 3.0 Hz, 1H), 6.12 (d, *J* = 3.0 Hz, 1H), 4.34 (m, 1H), 4.15 (m, 1H), 3.82 (s, 3H), 3.04 (t, *J* = 6.8 Hz, 2H).

Cycloadditions of 2-(2-furyl)ethyl (*E*)-2-carbomethoxyethenesulfinate (1b):

<u>Using no catalyst, without prior purification of 1b</u>: After the fragmentation of <u>p</u>-methoxybenzyl (*E*)-2-carbomethoxyethenyl sulfoxide (145 mg, 0.610 mmol) with SO_2Cl_2 (0.73 mL, 0.73 mmol) the solution was cooled to -78°C. BHT (13.4 mg, 0.0610 mmol), K_2CO_3 (253 mg, 1.83 mmol)

and 2-(2-furyl)ethanol (1 eq., 68.1 mg, 0.610 mmol) in CH_2Cl_2 (1 mL) were added. The mixture was warmed to -30 °C and stirred for 19 hr. Work-up as described above for **1b** (standard workup) and chromatography yielded **2b/3b** (inseparable 8.5:1 mixture of isomers, by ¹H NMR) as a white solid (66 mg, 47%). Recrystallization gave crystals of **2b** only, suitable for X-ray analysis. m.p. 102-103°C (EtOAc/hexanes).

2b: ¹H NMR (400 MHz), δ: 6.53 (dd, 1.7 & 5.6 Hz, 1H), 6.18 (d, J = 5.6 Hz, 1H), 5.31 (dd, J = 1.6 & 4.8 Hz, 1H), 4.39 (ddd, J = 2.0, 12.1 & 13.4 Hz, 1H), 3.82 (ddd, J = 1.7, 5.1 & 12.0 Hz, 1H), 3.71 (t(br), J = ca. 4.6 Hz, 1H), 3.69 (s, 3H), 3.01 (d, J = 4.1 Hz, 1H), 2.61 (ddd, J = 5.1, 13.4 & 15.2 Hz, 1H), 2.29 (dt, J = 1.7 & 15.2 Hz, 1H). ¹³C NMR (100.6 MHz), δ: 170.63, 138.91, 138.26, 85.05, 79.46, 57.02, 52.41, 51.94, 47.84, 27.45.

3b: ¹H NMR (400 MHz), δ: 6.48 (dd, *J* = 1.7 & 5.6 Hz, 1H), 6.27 (d, *J* = 5.6, 1H), 5.31 (dd, *J* = 1.7 & 4.8 Hz, 1H), 4.39 (ddd, *J* = 2.2, 6.4 & 12.1 Hz, 1H), 4.36 (dt, *J* = 3.9 & 12.1 Hz, 1H), 3.69 (s, 3H), 3.49 (t(br), *J* = 3.9 Hz, 1H), 2.77 (d, *J* = 3.9 Hz, 1H), 2.68 (ddd, *J* = 6.4, 11.8 & 15.1 Hz, 1H), 2.28 (ddd, *J* = 2.2, 3.9 & 15.1 Hz, 1H).

Mixture of **2b/3b**: IR (neat) cm⁻¹: 2927, 1733, 1340, 1275, 1251, 1225, 1205, 1188, 1132, 1103, 879, 865, 838, 822, 732. MS (CI/methane) m/z (rel. intensity): 245(6, $[M+1]^+$), 213(17), 181(10), 179(21), 163(42), 149(28), 121(17), 119(9), 105(5), 96(6), 95(100), 94(6), 57(14). Anal. Calc'd for C₁₀H₁₂O₅S: C, 49.17; H, 4.95. Found: C, 49.23; H, 4.89.

<u>Using ZnBr₂, with prior purification of 1b</u>: To a flame-dried flask containing ZnBr₂ (1.2 eq., 19 mg, 0.35 mmol), a solution of **1b** (72 mg, 0.30 mmol) in CH_2Cl_2 (2 mL) was added at rt. The mixture was stirred for 3.5 hr and was quenched with NaHCO₃ (aq) (5 mL). The layers were separated and the aqueous layer was washed with CH_2Cl_2 . The combined organic layers were

washed with brine, dried (MgSO₄) and concentrated (aspirator). Purification by centrifugal chromatography yielded **2b/3b** (inseparable 4.3:1 mixture of isomers, by ¹H NMR) (56mg, 78%).

Cycloadditions of furfuryl (*E*)-2-carbomethoxyethenesulfinate (1d):

<u>At -30 °C, without prior purification of 1d</u>: After fragmentation of p-methoxybenzyl (*E*)-2carbomethoxyethenyl sulfoxide (257 mg, 1.01 mmol) with SO₂Cl₂ (1.10 mL, 1.11 mmol) the solution was cooled to -78°C. BHT (24 mg, 0.11 mmol), K₂CO₃ (456 mg, 3.30 mmol) and a solution of furfuryl alcohol (0.7 eq., 69 mg, 0.71 mmol) in dry CH₂Cl₂ (1 mL) were added. The mixture was warmed to -30 °C and stirred for 19 hrs. Standard work-up yielded **2d/3d** (inseparable 6:1 isomer ratio, by ¹H NMR) as a white solid (135 mg, 83%). Recrystallization gave crystals of **2d** only, suitable for X-ray analysis. m.p. 99°C (dec.) (EtOAc/hexanes).

2d: ¹H NMR (400 MHz), δ: 6.56 (m, 1H), 5.42 (dd, *J* = 4.6 & 1.3 Hz, 1H), 4.95 (d, *J* = 11.0 Hz, 1H), 4.74 (d, *J* = 11.0 Hz, 1H), 3.71 (s, 3H), 3.70 (m, 1H), 3.59 (d, *J* = 3.9 Hz, 1H). ¹³C NMR (100.6 MHz), δ: 169.95, 137.79, 135.22, 98.30, 81.68, 75.44, 73.77, 52.48, 45.98.

3d: ¹H NMR (400 MHz), δ: 6.46 (ddd, *J* = 0.6, 1.5 & 5,8 Hz, 2H), 5.31 (dd, *J* = 4.6 & 1.5 Hz, 1H), 5.12 (d, *J* = 10.7 Hz, 1H), 4.73 (d, *J* = 10.7 Hz, 1H), 3.71 (s, 3H), 3.70 (m, 1H), 3.35 (d, *J* = 4.3 Hz, 1H).

Mixture of **2d/3d**: IR (neat) cm⁻¹: 2958, 1732, 1439, 1366, 1318, 1274, 1245, 1218, 1170, 1133, 1000, 918, 878. MS (EI) *m/z* (rel. intensity): 230(5, M⁺), 166(39), 152(40), 134(46), 124(56), 121(40), 102(26), 97(21), 96(30), 95(35), 92(45), 82(51), 81(100), 79(45), 78(39), 77(37), 65(42), 59(59), 54(21), 53(59), 52(33), 51(39). Anal. Calc'd for C₉H₁₀O₅S: C, 46.94; H, 4.39%. Found: C, 46.79; H, 4.39%.

<u>At -78 °C, without prior purification of 1d</u>: After fragmentation of <u>p</u>-methoxybenzyl (*E*)-2carbomethoxyethenyl sulfoxide (257 mg, 1.01 mmol) with SO_2Cl_2 (1.10 mL, 1.11 mmol) the solution was cooled to -77°C. BHT (24 mg, 0.11 mmol), K_2CO_3 (456 mg, 3.30 mmol) and a solution of furfuryl alcohol (0.7 eq., 69 mg, 0.71 mmol) in dry CH_2Cl_2 (1 mL) were added and the mixture was stirred at -77 °C for 9 hrs. Standard work-up yielded **2d** as a lone product.

Cycloadditions of (Z)-2-carbomethoxyethyl PMB sulfoxide and furfuryl alcohol (1e): After fragmentation of p-methoxybenzyl (Z)-2-carbomethoxyethenyl sulfoxide (230 mg, 0.965 mmol) with SO₂Cl₂ (1.2 mL, 1.2 mmol) the solution was cooled to -78°C. Then K₂CO₃ (400 mg, 2.90 mmol) and furfuryl alcohol (1 eq., 95 mg, 0.97 mmol) in CH₂Cl₂ (1 mL) were added. The mixture was warmed to -50 °C and stirred for 19 hr. Standard work-up and chromatography yielded **2e** as a slightly brown solid as a single isomer (97 mg, 47%) m.p. 99°C (dec.) (EtOAc/hexanes). ¹H NMR (400 MHz), δ : 6.58 (dd, *J* = 1.7 & 5.7 Hz, 1H), 6.52 (d, *J* = 5.7 Hz, 1H), 5.39 (d, *J* = 1.7 Hz, 1H), 5.16 (d, *J* = 10.8 Hz, 1H), 4.82 (d, *J* = 10.8 Hz, 1H), 3.79 (s, 3H), 3.27 (d, *J* = 8.8 Hz, 1H), 3.13 (d, *J* = 8.8 Hz, 1H). ¹³C NMR (100.6 MHz), δ : 170.08, 138.64, 131.54, 96.84, 83.94, 81.02, 71.49, 52.62, 47.53. IR cm⁻¹: 2955, 2360, 1744, 1224, 1179, 1120, 1092, 1060, 1029, 988, 942, 869. MS (EI) *m*/*z* (rel. intensity): 230 (7, M⁺), 140(20), 124(59), 121(17), 96(23), 93(25), 82(23), 81(100), 79(41), 78(22), 77(19), 65(31), 59(40), 53(59), 51(19). Anal. Calc'd for C₉H₁₀O₅S: C, 46.94; H, 4.39. Found: C, 46.95; H, 4.38.

ORTEP Structure of Cycloadduct 2b

Summary of Crystal Data, Data Collection, Structure Solution and Refinement Details of Compound 2b

(a) Crystal Data

empirical formula	$C_{10}H_{12}O_5S$
molar mass	244.26
color, habit	colorless, block
crystal size, mm	.42 x .42 x .39
crystal system	orthorhombic
<i>a</i> , A	31.068(2)
<i>b,</i> A	4.8936(4)
<i>c</i> , A	6.8948(7)
α, °	90
<i>β</i> , °	90
γ, °	90
V, A^3	1048.24(16)
space group	$Pna2_1$
Ζ	4
<i>F</i> (000)	512
$d_{\rm calc}, {\rm g \ cm}^{-3}$	1.548
μ , mm ⁻¹	0.312

(b) **Data acquisition**^a

temp, K	294(1)	
unit-cell reflcns (θ-range°)	9.5 22.0	
max. θ (°) for reflens	27.40	
hkl range of reflcns	-40 40; -6 6; -8 8	
variation in 3 standard reflens	0.5%	
reflcns measured	2383	
unique reflcns	2383	
reflens with $I > 2\sigma(I)$,	2213	
absorption correction type	psi-scans	
min. max. abs. corr.	.8589, .9966	
(c) Structure Solution and Re	efinement ^b	
refinement on	F^2	
solution method	direct methods	
H-atom treatment	riding	
no. of variables in L.S.	146	
weights: either		
$k \text{ in } w = 1/(\sigma^2 \text{Fo}^2 + k)$	$(0.0538P)^2 + 0.1349P$	
$[P = (Fo^2 + 2Fc^2)/3]$		
R, R _w , gof	0.031, 0.081, 1.12	
density range in		
final Δ -map, e A ⁻³	-0.214, 0.229	
final shift/error ratio	0.002	
sec. extnct. type	SHELXL	
sec. extnct. correction	0.0025(17)	

^a Data collection on an Enraf Nonius CAD4 diffractometer with graphite monochromatised Mo-K α radiation (λ 0.71067 A).

^b All calculations were done on a Silicon Graphics 4D-35TG computer system with the NRCVAX system of programs (E.J. Gabe, Y. Le Page, J-P. Charland, F.L. Lee and P.S. White, *J. Appl. Cryst.* (1989), **22**, 384-389) for refinement with observed data on F, or with SHELXL-93 for refinement with all data on F^2 .

ORTEP Structure of Cycloadduct 2d

SCHWAN, SNELGROVE, KALIN, FROESE AND MOROKUMA, <u>SUPPORTING INFORMATION</u> PAGE 12

Summary of Crystal Data, Data Collection, Structure Solution and Refinement Details for <u>Compound 2d</u>

(a) Crystal Data

empirical formula	$C_9H_{10}O_5S$
molar mass	230.23
color, habit	colorless, lath
crystal size, mm	0.42 x 0.18 x 0.10
crystal system	monoclinic
<i>a</i> , A	7.3717(9)
<i>b</i> , A	15.698(2)
<i>c</i> , A	8.5766(9)
a, °	90
eta, °	100.434(10)
γ, °	90
V, A^3	976.0(2)
space group	$P2_{1}/c$
Ζ	4
<i>F</i> (000)	480
$d_{\rm calc}, {\rm g \ cm}^{-3}$	1.567
μ , mm ⁻¹	0.330

(b) **Data acquisition**^a

temp, K	294(1)
unit-cell reflcns (θ-range°)	25 (10.3 18.2)
max. θ (°) for reflens	27.41
hkl range of reflens	-9 9; 0 20; 0 11
variation in 3 standard reflens	1.0%
reflcns measured	2459
unique reflcns	2231
R _{int}	0.019
reflens with $I > 2\sigma(I)$,	1401
absorption correction type	Gaussian integration
min. max. abs. corr.	0.9417, 0.9672
(c) Structure Solution and Re	efinement ^b
refinement on	F^2
solution method	direct methods
H-atom treatment	riding
no. of variables in L.S.	138
weights:	
$k \text{ in } w = 1/(\sigma^2 \text{Fo}^2 + k)$	$(0.0551P)^2$
$[P = (Fo^2 + 2Fc^2)/3]$	
R, R_w, gof	0.044, 0.110, 1.00
density range in	
final Δ -map, e A ⁻³	-0.216, 0.372
final shift/error ratio	-0.001
sec. extnct. type	SHELXL
sec. extnct. correction	0.0032(18)

^a Data collection on an Enraf Nonius CAD4 diffractometer with graphite monochromatised Mo-K α radiation (λ 0.71067 A). ^b All calculations were done on a Silicon Graphics 4D-35TG computer system with the NRCVAX system of programs (E.J. Gabe, Y. Le Page, J-P. Charland, F.L. Lee and P.S. White, *J. Appl. Cryst.* (1989), **22**, 384-389) for refinement with observed data on F, or with SHELXL-93 for refinement with all data on F².

Cartesian Coordinates for the Optimized Structures of Compounds 2f-5f, their Transition

States for Formation and of two Conformations of Reactant 1f.

2f: (exo, pseudoaxial O)

Transition State

0.0012 0.5425 0.9045
0.0015 -0.5455 -0.8945
1.4248 -0.5435 -0.8945
1.8050 0.7793 -0.8945
0.5925 1.5319 -0.8667
2.0495 -1.4191 -0.7743
2.8014 1.1849 -0.7786
0.4630 2.5708 -1.1446
-0.4222 0.6994 -1.2730
-1.0031 -1.6469 -1.0187
0.0058 1.3679 1.1132
-0.2331 -0.0109 1.2108
0.4727 -0.6664 1.7157
0.8497 1.7954 1.6466
-0.8605 2.0179 1.0177
-1.9044 -0.6781 1.2891
-1.5926 -1.9925 0.2589
-1.7899 -1.3420 -1.7156
-0.5392 -2.5708 -1.3725
-2.8014 0.3167 0.6325

С	0.0713 -0.4704 -0.4028
С	1.5974 -0.4704 -0.4028
С	1.9411 0.8223 -0.4028
С	0.6240 1.5953 -0.4168
Η	2.2278 -1.3452 -0.2929
Η	2.9289 1.2572 -0.3063
Η	0.6230 2.5922 -0.8574
0	-0.2258 0.7106 -1.1576
С	-0.7804 -1.6517 -0.8242
0	-1.8768 -1.7932 0.1080
S	-2.1680 -0.4668 1.1244
Η	-1.1684 -1.4967 -1.8353
Η	-0.2223 -2.5922 -0.7868
0	-2.9289 0.6184 0.4485
С	-0.3594 -0.0186 1.0407
С	-0.0321 1.4840 1.0085
Η	-0.9496 2.0799 1.0213
Η	0.6233 1.8023 1.8229
Η	0.1277 -0.5901 1.8353

3f: (exo, pseudoequatorial O)

Transition State

С	-0.3032 -0.5514 -0.9625
С	1.1157 -0.5514 -0.9625
С	1.4929 0.7755 -0.9625
С	0.2836 1.5258 -0.9334
Η	1.7437 -1.4228 -0.8310
Η	2.4892 1.1797 -0.8408
Η	0.1482 2.5655 -1.2045
0	-0.7341 0.6891 -1.3319
С	-1.3372 -1.6255 -1.0335
С	-0.3360 1.3410 1.0600
С	-0.5445 -0.0437 1.1546
Η	0.1858 -0.6743 1.6556
Η	0.5020 1.7789 1.5942
Η	-1.1966 1.9993 0.9627
S	-2.1717 -0.8276 1.3401
0	-2.4891 -1.1873 -0.3001
Η	-1.6967 -1.7928 -2.0539
Η	-0.9400 -2.5655 -0.6331
0	-1.8453 -2.0990 2.0539

С	-0.3104 -0.4849 -0.5804
С	1.2118 -0.4849 -0.5804
С	1.5541 0.8088 -0.5804
С	0.2391 1.5835 -0.5978
Η	1.8461 -1.3563 -0.4687
Η	2.5424 1.2429 -0.4836
Η	0.2411 2.5791 -1.0415
0	-0.6136 0.6979 -1.3368
С	-1.1897 -1.6412 -0.9885
0	-2.5129 -1.2991 -0.5397
S	-2.5424 -0.5525 0.9900
Η	-1.2471 -1.7588 -2.0730
Η	-0.8499 -2.5791 -0.5311
0	-2.5388 -1.5780 2.0730
С	-0.7479 -0.0347 0.8559
С	-0.4236 1.4747 0.8226
Η	-0.2687 -0.5921 1.6637
Η	0.2294 1.7858 1.6420
Η	-1.3287 2.0899 0.8467

4f: (exo, pseudoaxial O)

Transition State

С	-0.4516 -0.5818 -0.9015
С	0.9768 -0.5818 -0.9015
С	1.3521 0.7394 -0.9015
С	0.1417 1.4861 -0.8993
Η	1.5977 -1.4517 -0.7492
Η	2.3441 1.1503 -0.7664
Η	0.0072 2.5346 -1.1345
S	-0.7394 -1.6834 1.6520
0	-0.8713 0.6638 -1.3347
0	-1.4541 -2.4372 0.2934
С	-1.3423 -1.7812 -1.0028
Η	-2.3441 -1.4810 -1.3273
Η	-0.9492 -2.5346 -1.6921
0	0.7328 -1.9194 1.6921
С	-0.2920 1.1419 1.1941
С	-1.0220 -0.0383 0.9857
Η	0.6924 1.0872 1.6490
Η	-0.8407 2.0592 1.3890
Η	-2.0937 0.0735 0.8157

С	-0.5709 -0.5509 -0.8281
С	0.9546 -0.5509 -0.8281
С	1.3108 0.7361 -0.8281
С	0.0038 1.4986 -0.7472
С	-0.5165 1.2764 0.7465
С	-1.1204 -0.1212 0.5726
Η	1.5726 -1.4346 -0.7483
Η	2.3014 1.1669 -0.7441
Η	-0.0299 2.5249 -1.1112
Η	0.3058 1.3246 1.4643
Η	-1.2801 2.0058 1.0292
S	-0.8788 -1.6436 1.5638
Η	-2.2099 -0.0530 0.4760
0	-0.8807 0.6572 -1.5341
0	-1.4090 -2.5249 0.1775
С	-1.2934 -1.8497 -1.1114
Η	-2.3014 -1.6633 -1.4983
Η	-0.7550 -2.5189 -1.7877
0	0.5832 -1.8234 1.7877

5f: (exo, pseudoequatorial O)

Transition State

С	-0.4360 -0.5504 -1.2526
С	0.9921 -0.5504 -1.2526
С	1.3658 0.7729 -1.2526
С	0.1566 1.5161 -1.2663
Η	1.6122 -1.4252 -1.1127
Η	2.3568 1.1889 -1.1245
Η	0.0134 2.5648 -1.4923
S	-0.6848 -1.7032 1.3348
0	-0.8576 0.6879 -1.6864
0	-0.8829 -2.5648 -0.1723
С	-1.2889 -1.7872 -1.3064
Η	-2.3568 -1.5368 -1.2886
Η	-1.0888 -2.4197 -2.1779
0	-1.8777 -1.9911 2.1779
С	-0.2862 1.1295 0.8669
С	-0.9820 -0.0652 0.6266
Η	0.7014 1.1176 1.3185
Η	-0.8626 2.0302 1.0564
Η	-2.0608 0.0283 0.4893

С	-0.5582 -0.5103 -1.1007
С	0.9694 -0.5103 -1.1007
С	1.3241 0.7770 -1.1007
С	0.0118 1.5390 -1.0376
С	-0.5135 1.3342 0.4496
С	-1.0808 -0.0883 0.3017
Н	1.5879 -1.3972 -1.0400
Н	2.3138 1.2127 -1.0283
Н	-0.0174 2.5601 -1.4158
Η	0.2943 1.4384 1.1787
Η	-1.3056 2.0426 0.7045
S	-0.7946 -1.5850 1.3340
Н	-2.1753 -0.0530 0.2622
0	-0.8684 0.6882 -1.8183
0	-0.9006 -2.5601 -0.1165
С	-1.2298 -1.8463 -1.3327
Н	-2.3138 -1.7458 -1.4661
Η	-0.8102 -2.4335 -2.1538
0	-2.0226 -1.7664 2.1538

Two conformations of Reactant 1f

Minimum

С	0.5382 -0.5837 -1.8371
С	1.9034 -0.5837 -1.8371
С	2.3184 0.7875 -1.8371
С	1.1742 1.5251 -1.8358
Η	2.5383 -1.4591 -1.8366
Η	3.3302 1.1678 -1.8410
Η	0.9691 2.5849 -1.8415
0	0.0813 0.7109 -1.8400
0	-0.9344 -2.0151 -0.4974
С	-0.4745 -1.6703 -1.8341
Η	-1.3405 -1.4131 -2.4532
S	-2.5180 -1.5727 -0.0769
Η	-0.0243 -2.5849 -2.2281
0	-3.3302 -1.4655 -1.3279
С	-2.2052 0.1230 0.4344
С	-2.3976 0.4590 1.7084
Η	-2.7052 -0.2724 2.4532
Η	-2.2552 1.4788 2.0562
Η	-1.9043 0.8095 -0.3527

С	0.9650 -0.4769 -2.1962
С	2.3308 -0.4769 -2.1962
С	2.7428 0.8948 -2.1962
С	1.5961 1.6303 -2.1944
Η	2.9671 -1.3513 -2.1955
Η	3.7538 1.2773 -2.2014
Η	1.3891 2.6897 -2.1980
0	0.5060 0.8156 -2.1973
0	-0.5175 -1.9094 -0.8405
С	-0.0552 -1.5583 -2.1715
Η	-0.9144 -1.3005 -2.8012
S	-1.6830 -0.8343 -0.2122
Η	0.3828 -2.4835 -2.5527
С	-1.6872 -1.7219 1.3575
С	-2.8353 -2.1849 1.8405
Η	-3.7538 -2.0801 1.2682
Η	-2.8848 -2.6897 2.8012
Η	-0.7254 -1.7767 1.8591
0	-3.0078 -1.0762 -0.8553